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ABSTRACT
M

A class of nearly balanced incomplete block designs is defined. Thic

extends the concept of regular graph designs of John and Mitchell (1977) 4

to the unequally replicated case. Some necessary conditions on the exis-
tence of such designs are derived. Methods of construction are given for
some special cases. For five or six varieties, the "best” nearly balanced

incomplete block designs and their efficiencies are tabulated.
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Key Words - A-efficiency, D-efficiency, nearly balanced incompletc
block designs, regular graph designs
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SIGNIFICANCE AND EXPLANATION

To control the variations in experiments for comparing several treat-
ments, one often uses the technique of block designs. Traditional work
on the methods of construction has been concentrated on the equally repli-
cated case, that is, the total number of exvmerimental units is a multiple
of the total number of treatments to be compared. 1In this case, the
balanced incomplete block designs, when they exist, are most efficient.
We consider extensions of this class of designs to the unequally repli-
cated case. The idea is to relate some important features of the designs
to graphs. Some methods of construction of the proposed "nearly balanced
incomplete block designs" can be obtained via this connection. A list of

the "best" nearly balanced incomplete block designs for small parameters

is given.
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NEARLY BALANCED INCOMPLETE BLOCK DESIGNS

1 2

Ching-Shui Cheng~ and Chien-Fu Wu
1. INTRODUCTION.

Traditional work on the construction of block designs has been concentrated on the
equally replicated case, i.e., the total number of experimental units is a multiple of
the total number of varieties. For a given number of varieties to be compared and a
given block size, the assumption of equal replication imposes a severe constraint on
the number of blocks which can be constructed. From a practical viewpoint, it is
desirable to have a method to construct efficient block designs for the unequally
replicated case. This paper constitutes an attempt to this type of problems.

The key idea is to choose designs which are as "balanced" as possible. For the

equally replicated case, John and Mitchell (1976, 1977) have defined the regular graph

designs to be a class of binary incomplete block designs, where every pair of varieties
appeared in Xl or Az blocks with 12 = Al or Xl + 1. Although proposed on an
intuitive basis, this class of designs turned out to be very efficient. See Cheng

(1978b) for a study of the efficiency of regular graph designs. John and Mitchell

have also conjectured that the "best" regular graph design, if exists, is also the

"best" over the whole class of incomplete block designs. This conjecture was confirmed

in Cheng (1978a) for some special cases. Inspired by the success of these works, we 1
extend John and Mitchell's idea to the unequally replicated case and define a class
of nearly balanced incomplete block designs. The definition is given in Scction 2.

1

The regular graph design introduced by John and Mitchell can be related to a graph
with one common degree. Similarly, the nearly balanced incomplete block design can

be related to a graph with at most two different degrees. As a consequence, we have

1Department of Statistics, University of California, Berkeley, California, 94720
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derived some necessary conditions for the existence of such designs in Section 3. For
block size two or v - 1, where v is the number of varieties, nearly balanced incom-
plete block designs exist for any number of blocks. Simple methods of construction

are given in Section 5. For five or six varieties, a list of best nearly balanced
incomplete block designs and their efficiency iower bounds is given in Table 1. For 3
four varieties, the optimality of block designs with nearly balanced structure has

been considered in Cheng (1978c).
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2. DEFINITION AND CLASSIFICATION OF NEARLY BALANCED INCOMPLETE BLOCK DESIGNS.

When bk 1is a multiple of Vv, a balanced incomplete block design with v
varieties and b blocks of size k is an incomplete block design with each variety
appearing in each block at most once, each variety appearing in r blocks and any two
varieties appearing in A blocks, where r = bk/v and X = r(k - 1)/(v - 1). such
designs, if exist, are optimal in a very strong sense (Kiefer, 1975). For arbitrary
v,k,b, such designs may not exist. But, still, we want to get designs whose combina-
torial properties are as close to those of the balanced incomplete block designs as
possible. This motivates the following.

Definition. A nearly balanced incomplete block design (NBIBD) with v varieties and
b blocks of size k (v does not necessarily divide bk) is an incomplete block
design satisfying the following conditions:

(i) Each variety appears in each block at most once.

(ii) Let r, be the number of replications of variety i. Then each Lo = r

or r +1, where r = [bk/v] is the integral part of bk/v.
(iii) Let Xij be the number of times varieties i and Jj appear together.
Then fcr each fixed ]Ai 5= A gl = 1 forany j#3's 3.4° #4,

0 0
These designs can be further classified into two types. Let s be the number of

io,

varieties i with r, = . Then

s=v - (bk - vr) . (2.1)
Note that 1 <s <v and when s = v, the design is a regular graph design. It is
easily seen from the definition that if r, = r, then variety io appears together
with any other variety X or x+1 tines? where 1 is the integral part of

(k - 1)r/(v - 1). 1In this case, the number of varieties each of which appears together

with variety io % times is given by
n=v-1-{(k=-1r-2xiv-1}. (2.2)
As to the varieties i0 with rio =T+ 1, there are two possibilities according
to n>k=1 or n<k=1l., If n >k =1, then tor r, = ¥ +1, there are

0
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n - k +1 varieties each of which appears together with variety i_

are v +k-n-2 A, .'s equal to A
103

r+1, there are v - k +n

for ri
0 -
variety io A + 1 times and there are

n >k - 1, then there are only two possible values of

a nearly balanced incomplete block design is said to be of type I.

9

+ 1, On the other hand, if

varieties each of which appears togethe

k=-1+=-n

S

L
3

equal to

Xl y X

e O

o

Por n < k

can be ), et 1, or X + 2. 1In this case, we have a nearly balanced incomplete bl

design of type II.




3. RELATIONS TO GRAPHS AND NECESSARY CONDITIONS FOR EXISTENCE.

e

In this section, we relate nearly balanced incomplete block designs to graphs.
existence of a nearly balanced incomplete block design implies the existence of a grapn
with at most two distinct degrees which can be determined from the values of v,b, and
k. Using a result of Erdds and Gallai (1960) concerning the existence of graphs with
prescribed degrees, we then derive a necessary condition for the existence of nearly
balanced incomplete block designs.

For a binary incomplete block design with fixed block size Kk, {‘i}Z=1 and
{Aij}' i#3, 1<i, j <v, the variance-covariance matrix for estimating the treat-
ment effects is proportional to the generalized inverse of the so-called C matrix,

whose diagonal elements are (1 - k-l)ri, i=1,...,v and off-diagonal elements

-k—lxij' 1 <i, j <v. The optimality criteria for block designs are usually defined

in terms of this C matrix, as will be done in Section 4.

Let d be a nearly balanced incomplete block design of type I. Without loss of

generality, we may assume that rl = rz EaaaEn T and Lo e ST r+ 1.
Let
{(x - Dr + 3\}1s - XJS % —XJS e
A= i i i i e} e (3.1)
-A\J {k = 1)(xr +1) + A}T_ - AT
v-s,s s v~-S,V-s

where Is is the s x s identity matrix and Js,s is the s X s matrix of ones.
Then A - kC, where C is the matrix defined in the above paragraph, is a matrix in
which all the diagonal elements are zero and the off-diagonals are zero or ocne. Each
of the first s rows has v - n -1 1's and each of the last v - s rows has
v-n+k=-2 1's. Thus A - kC is the adjacency matrix of a graph with v vertices
in which s vertices have degree v - n -1 and v - s vertices have degree
v-n+k-=-2,

Erdds and Gallai (1960) proved that a graph with prescribed degree sequence

dl z_dz = woe 3 dv exists if and only if

ST 4, 1is even, (3.2)




2 v |
and (ii) } d. < 2(% - 1) + 2 min(‘l,di} for each integer ¢ with (3.3) i
=1 i=041

See, e.9., Harary (1969), p. 59.

|
|
e

Using (3.2) and (3.3), one can show that there exists a graph with v vertices in

which s vertices have degree x and v - s vertices have degree y with x <y if
and only if (i) xs + (v - s)y is even and

(i1) (v =8)y < (v=8)v -8~ 1) + sx. (3.4)

e s L

In the present case, x=v -n-1 and y=v - n +k - 2. From (2.1) and (2.2),

| X+ (V-8s)y=(v-n-1)s+ (v-s)(v-n+k-2)=>bk(k -1) - Av(v - 1), which
clearly is even. Therefore we conclude

) Proposition 1. For any given positive integers b,v,k with k >2 and k < v, let

i s and n be defined as in (2.1) and (2.2), respectively. If n > k - 1, and there
exists a nearly balanced incomplete block design with v varieties and b blocks of
size k , then s(n-s+l):(v-s)(n-k+l).

! This provides a necessary condition for the existence of a nearly balanced incom-

plete block design of type I. For example, if v =5, k = 3, b = 3, then r= 1,

i s=1, and m=2, Inthiscase, n =k -1 but sSh =-s+1) > {v-s)lh=-k +1).

Therefore, no nearly balanced incomplete block design exists. However, if v =5,
kK = 3, bi= 8, then ;=4,s=l,n=4 andiisi(ni=SsT 1) < (v = Ss)inl =k + 1)
holds. The associated graph has one vertex with degree four and four vertices with
degree two and is unique. The corresponding design is therefore unique and is given

| in Table 1.

Next we consider a nearly balanced incomplete block design of type II. Again we

assume that r . =r_= ... =r =7r and r = ...=r =1 +1. For any two
| 2 1 2 s s+l v ¥

different vertices i and j with 1 <i <s and s +1 <j <v, we must have

N = » or X 4+ 1. On the other hand, Aij = )‘ji =2 +1 or XA +2. Therefore
] 5 | ]
i {4 must be equal to ) + 1. Thus if i 4
i
!
\
por .

13
13
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Flite=T0E + 5 21D = (Gerai) g (A +1)e
S s,s

; s,v-s
‘ | ; 5 % o (3.5)
s T . 5
3 L SES ST S tk-2leal) + Ba2ity  « QN
1 then
|
N O
- Fa e ;i (3.6)
1 0 M

where N is sxs, M is (v =-s) x (v - s), and both M and N are zero-one
matrices with all the diagonal elements equal to zero. Furthermore, each row of N has
n 1l's and each row of M has v - k +n - s 1's. Therefore N is the adjacency
matrix of a regular graph with s vertices and degree n, and M is the adjacency
matrix of a regular graph with v - s vertices and degree v - k + n - s. Such regular
graphs exist if and only if 0 <n <s -1, 0<v-k+n-s<v-=-s-=-1, and both
ns and (v - s)(v - k +n - s) are even.
In summary, we have
Proposition 2. For any given positive integers b,v,k with k >2 and k <v, let
s and n be defined as in (2.1) and (2.2), respectively. If n< k - 1, and there
exists a nearly balanced incomplete block design with v varieties and b blocks of
size k, then n+lisf_v-k+n, and both ns and (v - s){v -k +n - s) are even
This provides a necessary condition for the existence of a nearly balanced
incomplete block design of type II. For example, when v =6, k=4, b=5, we

have r =3, s =4, n=1. In thiscase n < k - 1; however, since s >v - k + n

a nearly balanced incomplete block design does not exist. Another example: for v = 6,
k= 3, b=15, sn=3 is odd and hence the design does not exist.

By the above discussion, we see that a graph can always be constructed from a
design. Unfortunately, this process need not be reversible. The existence of a graph
does not imply that a design exists. Even if a design exists, it might be difficult

to be constructed from the corresponding graph. One exception is k = 2. When block

size is two, a design is equivalent to a graph since each block can be considered as

an edge. I'sing Proposition 1, we can prove

-

1
: |




i D o A

ot S

Proposition 3. For any given positive integers b and v, a nearly balanced incom-
plete block design with block size two always exists and is of type I.
Proof. By (2.2), n >1 =k - 1. Hence if the block size is two, then a nearly
balanced incomplete block design must be of type I. By Proposition 1 and the equivaler
of graphs and designs with k = 2, such a design exists if s(n-s+1) - (v-s)(n-1
When s > n, Hn-s+1):oi(v—sﬂn-lh while for sisinl= A,
sin - s+ 1) < (a=Lli(v=28) sinces n = s+ 1 £ v = is. Therefore it remains to zhow
that the inequality holds for s=n, that is to show that n < (v - n)(n - 1). In t&hl
case, from the paragraph right before Proposition 1, wvn - (v-n)(k=1)=vn=-(v-n) 1i:=
even. It follows that both v and n are even. Together with 1 =me e w1, this
implies 2 <n <v - 2. The inequality n < (v - n)(n - 1) clearly follows. 0.E.D.
Proposition 3 guarantees the existence of a nearly balanced incomplete block desian
for k = 2 and any values of b and v. Two methods of construction are described

in Section 5.

“fw




4. EFFICIENCY BOUNDS.

i i > 2 e 2 4 > =0 th
For an incomplete block design d, let ul 2 u2 * e Jv_l L be =
v-1 -1 v-1 1
eigenvalues of the C matrix of d. Define ¢ (d) = Y and ¢ (@) = I .
| A 2 1 D JReRg
i=1 i=1
A design is A- (or D-) optimal if it minimizes the ¢A (or iD) values among all

the possible designs with the same parameters (v,k,b). The A-efficiency and

D-efficiency of a design d is defined to be eA(d) = ¢A(A-optimal design)/lA(d) and
il

eD(d) = {¢D(D-optimal design)/¢D(d)}v-l. One problem with these definitions is that

optimal designs are only known for some special cases. Instead, we will give simple
lower bounds of e and ey as some conservative measures of the efficiencies of 4.

For any design d with parameters (v,k,b), Kiefer (1958, 1975) has shown that

8.6} > tv - 1126 ana o (@) > (6w -1)1V"1, where §=b(k - 1). These two

lower bounds are the ¢A- and ¢D—values of a balanced incomplete block design, if

exists, with parameters (v,k,b). Two efficiency lower bounds of e and e, are

defined as
] = = 2
eA(d) =0 1) /5¢A(d) (4.1)

and 1
=1

o e 1)/1{e, @ i (4.2)

eB(d) =34

These will be used to measure the efficiencies of the proposed designs of the paper in

Section 6.

bl “9=




5. CONSTRUCTION.
. A block design with v varieties and b blocks of size two is fully eguivalent

to a graph with v vertices and b edges. Note that each edge connects two vertices

in the same way as each block contains two varieties. Therefore, a nearly balanced
¥ ; . S A 1
il incomplete block design with v varieties and b blocks of size two, b < > vy = 1),

can be viewed as a graph with v vertices and b edges such that, for any pair of

vertices, there is at most one edge connecting them, that s vertices have degree r
and v - s vertices have degree r+1, where r = [%?J and s = vr + v - 2b. The '
existence of such graphs has been proved in Section 3.

The following scheme gives a method of construction of graphs with a prescribed
£} degree sequence. From a result due to Hakimi and Havel (Harary, 1969, p. 58), a graph

d with v vertices and degrees 4, >4, > ... 2_dv exists if a graph d' with

2

1
v - 1 vertices and degrees (d, -1, 4, -1,...,

2 3 ,dv) exists.

4 - 1, d i
d1+l d1+2

Graph d can be obtained from graph d' by introducing one more vertex to d' and
[ connecting it to the dl vertices of d' with degrees d2 = Iy d3 - 1,...,dd " : 19
1
For example, for v =7, k=2, b=28, *=2 and s = 5. From the above iterative

scheme, the corresponding degree sequences are (3,3,2,2,2,2,2), (2,2,2,2,1,1),

(2,1,1,1,1) and (1,1,0,0). The building-up process is illustrated in Figure 1.

S

5
////\\\ ‘///n\\\b
30 04 3° \4 3 4

(o
N
-
(¥}
—
N

i FIGURE 1

Another method of construction, which is non-iterative in nature, is outlined

below. A hamiltonian cycle is a collection of edges of the form (il.iz), (iz,ix)....,

(i
A

;—l'i")’ (iv'il)’ where (il,...,iv) is a permutation of (1,...v). For v odd,

-10-




a complete graph of v vertices is the union of disjoint hamiltonian cycles

2

ﬁbi'. See Theorem 9.6 of Harary (1969). Suppose (g - 1)v < b < qv for some positive

integer g :_!??—. Then a nearly balanced incomplete block design with v varieties

and b Dblocks of size two can be constructed as the sum of Sl""'sq-l and some
b - (g - 1)v edges from sq. For example, (16253471), (13645721) and (14237651)
are three disjoint hamiltonian cycles for v = 7. When b = 11, one such design is
{(16), (62), (25), (53), (34), (47), (71), (13), (64), (57), (21)}. For v even, a
construction method can be obtained by modifying the above method slightly. For details,
see Theorem 9.7 of Harary (1969).
We should remark that none of these methods of construction gives unique designs.
For c !ii%%il S°h <lcha ) le%%llv where ¢ 1is an integer, the construction of
a nearly balanced incomplete block design with v varieties and b blocks of size two
can be reduced to the case b < %—v(v - 1) by adding c¢ copies of the balanced incom-
plete block design with %—v(v - 1) blocks.
For k =v - 1, the construction of nearly balanced incomplete block designs is
very simple. Starting with the balanced incomplete block design «¢* with v Dblocks,
a nearly balanced incomplete block design with b blocks, 2 <b <v, can be
obtained as any b blocks of d*. For Vv <b < 2v, one simply adds any b - v
blocks of @d* fto d*.
For 3 <k <v - 2, a nearly balanced incomplete block design may not exist. The
problem of constructing such designs is still very much open. But when b is close
to b* for which a balanced incomplete block design d* with b* blocks exists, a

nearly balanced incomplete block design with b blocks may be obtained by adding or

removing some blocks to or from d*.

1=

bl g ol




E’: 6. EXAMPLES.

A list of nearly balanced incomplete block designs for v = 5,6 is given in

j Table 1. The case k = Vv - 1 1is not considered here since it has heen treated in
Section 5. For the equally replicated case, i.e. bk is divisible by v, Mitchell
Q and John (1976) have listed all the best reqgular graph designs. The readers should

consult their paper for the description of designs and their efficiencies, whose defi-

nition is different from ours.

In Table 1, a balanced incomplete block design with parameters (v,k,b) is

denoted by BIBD (V,k,b). The best regular graph design which is not BIBD is denoted

by RGD. The meaning for NBIBD (v,k,b) is also evident. When there exist several

designs for the same parameters, only the one with the highest eA and e' values

(see formulae (4.1), (4.2)) is listed. For example, for v =6, k = 2, b= 7, the

corresponding graph as described in Section 5 has four vertices with degree two and

two vertices with degree three. There are four non-isomorphic graphs with this property,
! Harary (1969). The four associated designs are d. = (12) (23) (34) (45) (56) (61) (36),

1

2 (12) (23) (34) (45) (56) (61) (15), d3 = (12) (23) (34) (45) (51) (16) (36) and

d

[}

d

4 (12) (23) (31) (16) (45) (56) (64). Their A- and D-efficiency lower bounds e, and
eb are, respectively, (0.754, 0.878), (0.731, 0.866), (0.793, 0.889), (0.510, 0.793).
Therefore, only d3 is listed in Table 1. If there exist a BIBD (v,k,bl) and an
NBIBD CV,k,bz). then an NBIBD (v.k,bl + bz) can be obtained by combining these two
designs. This is useful for constructing nearly balanced incomplete block designs with
large b. For example, an NBIBD (5,2,14) can be obtained by combining the BIBD
(5,2,10) and an NBIBD (5,2,4).

The high efficiencies of the "best" nearly balanced incomplete block designs
are evident from Table 1. 1In fact, we can obtain a sharp lower bound of the A- and

D-efficiences of the whole class of nearly balanced incomplete block designs for a given

parameter set. These efficiency lower bounds turn out to be very high as was experienced

in Cheng (1978b). For the sake of simplicity, these are omitted in the paper.

-12-
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TABLE 1. SOME NEARLY BALANCED INCOMPLETE BLOCK DESIGNS AND THEIK

A-,

D-EFFICIENCY LOWER BOUNDS:

RGD: regular graph design exists.

No NBIBD: no nearly balanced incomplete block design exists.

Number of Blocks

10
11
12

13

2
3,4,6,7
5
8
9

10

11

Design d

(i) v =5, k=2
(12) (23) (34) (45)
RGD
(12) (23) (34) (41) (25) (45)
(12) (23) (34) (45) (51) (13) (24)
BIBD (5,2,10) minus (23) (45)
Any nine blocks of the BIBD (5,2,10)
BIBD (5,2,10)
BIBD (5,2,10) plus (12)
BIBD (5,2,10) plus (12) (34)
BIBD (5,2,10) plus (12) (34) (15)

(ii) v=5, k=3
(123) (451)

No NBIBD

RGD

BIBD (5,3,10) minus (123) (451)
BIBD (5,3,10) minus (123)

BIBD (5,3,10)

BIBD (5,3,10) plus (123)

~13=

eA(d)

0.500

0.869

0.890

0.937

0.952

0.979

0.972

0.969

0.714

0.985

0.987

0.991

UNEQUALLY REPLICATED CASE

1
CD(d)

0.747

0.927

0.945

0.968

0.977

0.988

0.986

0.984

0.863

0.992

0.993

0.995

é
4
H
:
H



TABLE 1 (CONT.)

Number of Blocks

5
6,9,12,18
7
8

10

Jal

13
14
15
16
17

19

3
4,6,8,12

5

7

9

10

11

Design d

(iii) v = 6, k = 2
(12) (23) (34) (45) (56)
RGD
(12) (23) (34) (45) (51) (16) (36)
(12) (23) (34) (45) (56) (61) (14) (25)

(12) (23) (34) (45) (56) (61)
(14) (15) (25) (36)

(12) (23) (34) (45) (56) (61)
(15) (24) (35) (36) (46)

BIBD (6,2,15) minus (12) (34)

BIBD (6,2,15) minus (12)

BIBD (6,2,15)

BIBD (6,2,15) plus (12)

BIBD (6,2,15) plus (12) (34)

BIBD (6,2,15) plus (15) (25) (36) (46)
(iv) v=6, k = 3

(156) (246) (345)

RGD

No NBIBD

(126) (134) (145) (235) (246) (356) (456)

Any nine blocks of the BIBD (6,3,10)

BIBD (6,3,10)

BIBD (6,3,10) plus (123)

=14~

eA(d)

0.428

0.793

0.833

0.914

0.921

0.961

0.974

0.986

0.980

0.975

0.769

0.963

0.980

0.988
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eB(d)

0.715

0.889

0.915

0.954

0.960

0.981

0.988

0.993

0.990

0.987

0.882

0.981

0.990

0.994




TABLE 1 (CONT.)

Number of Blocks

2
3,6,9,12
4,5,7,8,10,11
13
14
15

16

SOME NEARLY BALANCED INCOMPLETE BLOCK DESIGNS AND THEIR
A-, D-EFFICIENCY LOWER BOUNDS: UNEQUALLY REPLICATED CASE

Design d

(v) v=26, k = 4
(1234) (3456)
RGD
No NBIBD
BIBD (6,4,15) minus (1234) (3456)
BIBD (6,4,15) minus (1234)
BIBD (6,4,15)

BIBD (6,4,15) plus (1234)

ea(d)

0.806

0.995

0.996

09917

eé(d)

0.903

0.997

0.998

0.998
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